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and solve equations (1) and (5) by trial and error for W), and
W, where Wy, = 1 — W,,. Then W, is calculated from
equation {5) provided subscript 1 is replaced by 2, excluding
the molecular weight ratio. The correct T, is obtained once
W+ Wy =1

In Fig, 1 exact solution for the heat transfer efficiency,
q/40, given by Sparrow and Marschall [1] are compared with
those obtained from equation (1) for methanol-water mix-
tures, It may be observed that the maximum deviation be-
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Fig. 2. Effect of interfacial suction on the heat transfer at
370°K and 760 mm Hg.
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tween the results is around 10 per cent. Hence, equation (1)
is a reasonable solution to the problem and is suggested for
practical application, In Fig 2 it is observed that interfacial
suction may increase the condensation efficiency, and in
particular for low values of the thermal driving force. This
is due to the increase in T; as compared to the case where
suction is absent. In general, however, the improving in
condensation due to suction in this case seems to be some-
what less attractive as compared to the effect of suction in
the presence of noncondensable gases [4].
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INTRODUCTION
THE REFLECTION and transmission of radiation by a semi-
transparent medium are affected by the absorption and
scattering properties of the medium below the surface, the
angular distribution of the incident radiation and the
reflection characteristics of the bounding surfaces. A

pumber of investigations have been reported in the literature
on the determination of radiative properties of semi-
infinite and finite plane-parallel medium respectively for the
case of transparent boundaries. The mathematical tech-
niques developed by Chandrasekhar 2] have been used by
several investigators [3~7] to investigate the transmission
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and reflection of radiation by a semi-transparent medium,
and results are reported over a limited range of parameters.
In the present analysis an absorbing, isotropically scattering,
non-conservative, plane-parallel slab of optical thickness 7,
is considered. The boundary surface at T = 0 is transparent
while the boundary at T = 7, is a reflecting one having both
specular and diffuse reflectivity components. The hemi-
spherical reflectivity and transmissivity of the slab for
isotropic radiation incident on the boundary t =0 is
determined by using both an exact treatment with the
normal-mode expansion technique and a simple approxi-
mate analysis with the P,-approximation. A comprehensive
tabulation of the hemispherical reflectivity and trans-
missivity of the slab obtained by the exact and approximate
analysis is presented over a wide range of optical thickness
7, single scattering albedo @ and the boundary surface
reflectivities p* and p? and the exact and the approximate
results are compared.

ANALYSIS

Consideration is given to an absorbing, isotropically
scattering, plane-parallel slab of optical thickness 1o,
irradiated by an isotropic radiation of unit intensity of the
boundary 7 = 0 which is assumed to be transparent. The
boundary surface at t = 7, is a reflecting one, having a
reflectivity p which can be expressed as a sum of a specular p*
and diffuse p¢ reflectivity components in the form p = p*
+ p*. Re-radiation (i.e. emission) from the medium and the
boundary surface 7 = 7, is considered negligible. Then the
radiation problem satisfies the following equation of
radiative transfer and the boundary condition:

1

+1(1,,1)=§ jm,,ﬁ)du’, in —1<p<l,

-1

oz, 1)
ot

u

0<7t<1, 1)

0, ) =1,p>0 (2a)

1
Iy, — 1) = p*I(to, 1) + 20% [ I(z0, ¢) 4 Apt, > O (2D)
4]

where I(, 1) is the radiation intensity, t is the optical variable,
uis the cosine of the angle between the direction of radiation
intensity and the positive © axis, w is the single scattering
albedo and 7, is the optical thickness of the slab.

We describe below briefly the exact and approximate
methods of solution of the above problem and the deter-
mination of the hemispherical reflectivity and transmissivity.

The exuct treatment
Using the normal-mode expansion technique the solution
of equation (1) can be written in the form [8]

Iz, @) = Alno) dlno, p) e ™" + A(—ng) $(—1,, p) €7,

1 1
+ iA(n) d(n, e "dn + {A(—ﬂ) $(—n, me’"dn, (3)

689

where ¢(+¢, 1), & =19y or ne(0, 1) are the normal-modes
defined in [9], and A(+ &), € = n, or n are the unknown
expansion coefficients which can be determined by con-
straining this solution to satisfy the boundary conditions
equations (2) and by utilizing the orthogonality property of
normal modes and the half-range completeness theorem as
described in [8]. Once these expansion coefficients are
known, the hemispherical reflectivity R of the slab is deter-
mined from the definition
1

1
R=1[2n iI(O, — ) ppdp]/(2n § udp] ]

0

which becomes
1
R = 2[A(no) f(—no) + A(—no) fne) + {A('I)f(—’l) dn

1
+ g Amfydn]  (5a)

where

1
f(£) = [d+Emudu, § =noorn. (5b)
[
The integrals in equation (5b) can be evaluated analytically.
The transmissivity T of the slab is determined from the
definition

1 1
T=[2n _Il I(zo, ) pdp}/[2n g pdpl (6)

which becomes

T = 21 ~ o) [Alno) o e ™™/ — A(—1o} 1o €™

1 1
+ fAmne ™Mdn + [A(—p)nednl,w £ 1. (7
0
0

The Py-approximation

Using the P,-approximation (which is equivalent to the
Eddington approximation) and the Marshak approximation
for the boundary conditions, the radiative transfer problem
given by equations (1) and (2) is transformed to the solution
of the following simple problem [10]

dz
d(;’) ~31-w)G()=0in0<t<t, (8a)
2dG(7) _ _
Go) - ;=" =4 atr=0 (8b)
dG(7)

(1 —p*~pNG() + (1 + p* + p% =0 att=r1,

d
8¢

where the function G(7) is related to the radiation intensity
I(z, 1) and the net radiative heat flux g(z) by

dG(z) ]

(9a)

1
I(z, y) = i [G(r) e
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1 dG(t)
glt) = — g 4z

{9b)

Once the function G{1) is determined from the solution of
equations (8), the hemispherical reflectivity R and the
transmissivity T of the slab are determined according to
the foregoing definitions from the following relations.

1 2dG{0)
R = 5;[6(0) + 3 de ] (10)
1 dGizy)
= T TE (1
RESULTS

Tables 1 and 2 show respectively the hemispherical
reflectivity and the transmissivity of the slab obtained from
the exact analysis and the P;-approximation for several
different values of the optical thickness, single scattering
albedo and the boundary surface reflectivities. The absorp-
tivity of the slab can also be determined from the data
presented in these tables since the sum of the absorptivity,
reflectivity and transmissivity is equal to unity. The exact
analysis shows that the reflectivity of the slab is slightly
higher with specularly reflecting boundary at t = 1, than
with diffusely reflecting boundary. For optical thicknesses
15 and larger the hemispherical reflectivity is almost equal
to that of a semi-infinite medium and transmissivity becomes
almost zero. The results with the P,-approximation,
however, do not distinguish whether the reflectivity at the
boundary surface T = 1, is specular or diffuse. The P,-
approximation underestimates the hemispherical reflectivity,
and the accuracy of this approximation is not so good for
smaller values of w; for some cases w < 02 it has shown
negative results which are meaningless, However, for
close to unity and large optical thicknesses the P,-approxi-
mation gives reasonably good results.
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